1)Two diced are tossed the probability that the total score is a prime number?
Sol:Number of total ways n(S) =6 * 6 =36
E =event that the sum is a prime number.
Then E={(1,1)(1,2)(1,4)(1,6)(2,1)(2,3)(2,5)(3,2)(3,4)(4,1)
(4,3)(5,2)(5,6)(6,1)(6,5)}
n(E) =15
P(E) =n(E)/n(S)
= 15/36
P(E) = 5/12
2)Two dice are thrown simultaneously .what is the probability of getting two numbers whose product is even?
Sol : In a simultaneous throw of two dice ,we have n(S) = 6*6= 36
E=Event of getting two numbers whose product is even
E={(1,2)(1,4)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,2)
(3,4)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,2)(5,4)(5,6)(6,1)
(6,2)(6,3)(6,4)(6,5)(6,6)}
n(E) = 27
P(E) = n(E)/n(S)
= 27 /36
P(E) =3/4
probability of getting two numbers whose product is even is
equals to 3/4.
3)In a lottery ,there are 10 prozes and 25 blanks.A lottery is drawn at random. what is the probability of getting a prize ?
Sol: By drawing lottery at random ,we have n(S) =10C1+25C1
= 10+25
= 35.
E =event of getting a prize.
n(E) =10C1 =10
out of 10 prozes we have to get into one prize .The number of
ways 10C1.
n(E) =10
n(S) =35
P(E) =n(E)/n(S)
=10/35
= 2/7
Probability is 2/7.
4)In a class ,30 % of the students offered English,20 % offered Hindi and 10 %offered Both.If a student is offered at random, what is the probability that he has offered English or Hindi?
Sol:English offered students =30 %.
Hindi offered students =20%
Both offered students =10 %
Then only english offered students E =30 -10
=20 %
only Hindi offered students S =20 -10 %
= 10 %
All the students =100% =E +S +E or S
100 =20 +10 + E or S +E and S
Hindi or English offered students =100 -20-10-10
=60 %
Probability that he has offered English or Hindi =60/100= 2/5
5) A box contains 20 electricbulbs ,out of which 4 are defective,two bulbs are chosen at random from this box.What is theprobability that at least one of these is defective ?
Sol: out of 20 bulbs ,4 bulbs are defective.
16 bulbs are favourable bulbs.
E = event for getting no bulb is defective.
n(E) =16 C 2
out of 16 bulbs we have to choose 2 bulbs randomly .so the number
of ways =16 C 2
n(E) =16 C2
n(S) =20 C 2
P(E) =16 C2/20C2
= 12/19
probability of at least one is defective + probability of one
is non defective =1
P(E) + P(E) =1
12/19 +P(E) =1
P(E’) =7/19
6)A box contains 10 block and 10 white balls.What is the probability of drawing two balls of the same colour?
Sol: Total number of balls =10 +10
=20 balls
Let S be the sample space.
n(S) =number of ways drawing 2 balls out of 20
= 20 C2
= 20 !/(18! *2!)
= 190.
Let E =event of drawing 2 balls of the same colour.
n(E) =10C2+ 10C2
= 2(10 C2)
= 90
P(E) =n(E)/n(S)
P(E) =90/190
= 9/19
7) A bag contains 4 white balls ,5 red and 6 blue balls .Three balls are drawn at random from the bag.What is the probability that all of them are red ?
Sol: Let S be the sample space.
Then n(S) =number of ways drawing 3 balls out of 15.
=15 C3.
=455
Let E =event of getting all the 3 red balls.
n(E) = 5 C3 =5C2
= 10
P(E) =n(E) /n(S) =10/455 =2/91.
8)From a pack of 52 cards,one card is drawn at random.What is the probability that the card is a 10 or a spade?
Sol: Total no of cards are 52.
These are 13 spades including tne and there are 3 more tens.
n(E) =13+3
= 16
P(E) =n(E)/n(S).
=16/52
P(E) =4/13.
9) A man and his wife appear in an interview for two vacancies in the same post.The probability of husband's selection is 1/7 and the probabililty of wife's selection is 1/5.What is the probabililty that only one of them is selected?
Sol: let A =event that the husband is selected.
B = event that the wife is selected.
E = Event for only one of them is selected.
P(A) =1/7
and
p(B) =1/5.
P(A') =Probability of husband is not selected is =1-1/7=6/7
P(B') =Probaility of wife is not selected =1-1/5=4/7
P(E) =P[(A and B') or (B and A')]
= P(A and B') +P(B and A')
= P(A)P(B') + P(B)P(A')
= 1/7*4/5 + 1/5 *6/7
P(E) =4/35 +6/35=10/35 =2/7
10)One card is drawn at random from a pack of 52 cards.What is the probability that the card drawn is a face card?
Sol: There are 52 cards,out of which there 16 face cards.
P(getting a face card) =16/52
= 4/13
11) The probability that a card drawn from a pack of 52 cards will be a diamond or a king?
Sol: In 52 cards 13 cards are diamond including one king there are
3 more kings. E event of getting a diamond or a king.
n(E) =13 +3
= 16
P(E) =n(E) /n(S) =16/52
=4/13
12) Two cards are drawn together from apack of 52 cards.What is the probability that one is a spade and one is a heart ?
Sol: S be the sample space the n (S) =52C2 =52*51/2
=1326
let E =event of getting 2 kings out of 4 kings
n(E) =4C2
= 6
P(E) =n(E)/n(S)
=6/1326
=1/221
13) Two cards are drawn together from a pack of 52 cards.What is the probability that one is a spade and one is a heart?
Sol: Let S be the sample space then
n(S) =52C2
=1326
E = Event of getting 1 spade and 1 heart.
n(E) =number of ways of choosing 1 spade out of 13 and 1 heart out
of 13.
= 13C1*13C1 =169
P(E)= n(E)/n(S)
=169/1326 =13/102.
14) Two cards are drawn from a pack of 52 cards .What is the probability that either both are Red or both are Kings?
Sol: S be the sample space.
n(S) =The number of ways for drawing 2 cards from 52 cards.
n(S) =52C2
=1326
E1 be the event of getting bothe red cards.
E2 be the event of getting both are kings.
E1nE2 =Event of getting 2 kings of red cards.
We have 26 red balls.From 26 balls we have to choose 2 balls.
n(E1) =26C2
= 26*25/2
=325
We have 4 kings .out of 4 kings,we have to choosed 2 balls.
n(E2) =4C2
=6
n(E1nE2) =2C2 =1
P(E1) = n(E1)/n(S)
=325/1326
P(E2) =n(E2)/n(S)
=6/1326
P(E1nE2) =n(E1nE2)/n(S) =1/1326
P(both red or both kings) = P(E1UE2)
= P(E1) +P(E2)-P(E1nE2)
=325/1326 +6/1326 -1/1326
=330/1326 =55/221
Sol:Number of total ways n(S) =6 * 6 =36
E =event that the sum is a prime number.
Then E={(1,1)(1,2)(1,4)(1,6)(2,1)(2,3)(2,5)(3,2)(3,4)(4,1)
(4,3)(5,2)(5,6)(6,1)(6,5)}
n(E) =15
P(E) =n(E)/n(S)
= 15/36
P(E) = 5/12
2)Two dice are thrown simultaneously .what is the probability of getting two numbers whose product is even?
Sol : In a simultaneous throw of two dice ,we have n(S) = 6*6= 36
E=Event of getting two numbers whose product is even
E={(1,2)(1,4)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,2)
(3,4)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,2)(5,4)(5,6)(6,1)
(6,2)(6,3)(6,4)(6,5)(6,6)}
n(E) = 27
P(E) = n(E)/n(S)
= 27 /36
P(E) =3/4
probability of getting two numbers whose product is even is
equals to 3/4.
3)In a lottery ,there are 10 prozes and 25 blanks.A lottery is drawn at random. what is the probability of getting a prize ?
Sol: By drawing lottery at random ,we have n(S) =10C1+25C1
= 10+25
= 35.
E =event of getting a prize.
n(E) =10C1 =10
out of 10 prozes we have to get into one prize .The number of
ways 10C1.
n(E) =10
n(S) =35
P(E) =n(E)/n(S)
=10/35
= 2/7
Probability is 2/7.
4)In a class ,30 % of the students offered English,20 % offered Hindi and 10 %offered Both.If a student is offered at random, what is the probability that he has offered English or Hindi?
Sol:English offered students =30 %.
Hindi offered students =20%
Both offered students =10 %
Then only english offered students E =30 -10
=20 %
only Hindi offered students S =20 -10 %
= 10 %
All the students =100% =E +S +E or S
100 =20 +10 + E or S +E and S
Hindi or English offered students =100 -20-10-10
=60 %
Probability that he has offered English or Hindi =60/100= 2/5
5) A box contains 20 electricbulbs ,out of which 4 are defective,two bulbs are chosen at random from this box.What is theprobability that at least one of these is defective ?
Sol: out of 20 bulbs ,4 bulbs are defective.
16 bulbs are favourable bulbs.
E = event for getting no bulb is defective.
n(E) =16 C 2
out of 16 bulbs we have to choose 2 bulbs randomly .so the number
of ways =16 C 2
n(E) =16 C2
n(S) =20 C 2
P(E) =16 C2/20C2
= 12/19
probability of at least one is defective + probability of one
is non defective =1
P(E) + P(E) =1
12/19 +P(E) =1
P(E’) =7/19
6)A box contains 10 block and 10 white balls.What is the probability of drawing two balls of the same colour?
Sol: Total number of balls =10 +10
=20 balls
Let S be the sample space.
n(S) =number of ways drawing 2 balls out of 20
= 20 C2
= 20 !/(18! *2!)
= 190.
Let E =event of drawing 2 balls of the same colour.
n(E) =10C2+ 10C2
= 2(10 C2)
= 90
P(E) =n(E)/n(S)
P(E) =90/190
= 9/19
7) A bag contains 4 white balls ,5 red and 6 blue balls .Three balls are drawn at random from the bag.What is the probability that all of them are red ?
Sol: Let S be the sample space.
Then n(S) =number of ways drawing 3 balls out of 15.
=15 C3.
=455
Let E =event of getting all the 3 red balls.
n(E) = 5 C3 =5C2
= 10
P(E) =n(E) /n(S) =10/455 =2/91.
8)From a pack of 52 cards,one card is drawn at random.What is the probability that the card is a 10 or a spade?
Sol: Total no of cards are 52.
These are 13 spades including tne and there are 3 more tens.
n(E) =13+3
= 16
P(E) =n(E)/n(S).
=16/52
P(E) =4/13.
9) A man and his wife appear in an interview for two vacancies in the same post.The probability of husband's selection is 1/7 and the probabililty of wife's selection is 1/5.What is the probabililty that only one of them is selected?
Sol: let A =event that the husband is selected.
B = event that the wife is selected.
E = Event for only one of them is selected.
P(A) =1/7
and
p(B) =1/5.
P(A') =Probability of husband is not selected is =1-1/7=6/7
P(B') =Probaility of wife is not selected =1-1/5=4/7
P(E) =P[(A and B') or (B and A')]
= P(A and B') +P(B and A')
= P(A)P(B') + P(B)P(A')
= 1/7*4/5 + 1/5 *6/7
P(E) =4/35 +6/35=10/35 =2/7
10)One card is drawn at random from a pack of 52 cards.What is the probability that the card drawn is a face card?
Sol: There are 52 cards,out of which there 16 face cards.
P(getting a face card) =16/52
= 4/13
11) The probability that a card drawn from a pack of 52 cards will be a diamond or a king?
Sol: In 52 cards 13 cards are diamond including one king there are
3 more kings. E event of getting a diamond or a king.
n(E) =13 +3
= 16
P(E) =n(E) /n(S) =16/52
=4/13
12) Two cards are drawn together from apack of 52 cards.What is the probability that one is a spade and one is a heart ?
Sol: S be the sample space the n (S) =52C2 =52*51/2
=1326
let E =event of getting 2 kings out of 4 kings
n(E) =4C2
= 6
P(E) =n(E)/n(S)
=6/1326
=1/221
13) Two cards are drawn together from a pack of 52 cards.What is the probability that one is a spade and one is a heart?
Sol: Let S be the sample space then
n(S) =52C2
=1326
E = Event of getting 1 spade and 1 heart.
n(E) =number of ways of choosing 1 spade out of 13 and 1 heart out
of 13.
= 13C1*13C1 =169
P(E)= n(E)/n(S)
=169/1326 =13/102.
14) Two cards are drawn from a pack of 52 cards .What is the probability that either both are Red or both are Kings?
Sol: S be the sample space.
n(S) =The number of ways for drawing 2 cards from 52 cards.
n(S) =52C2
=1326
E1 be the event of getting bothe red cards.
E2 be the event of getting both are kings.
E1nE2 =Event of getting 2 kings of red cards.
We have 26 red balls.From 26 balls we have to choose 2 balls.
n(E1) =26C2
= 26*25/2
=325
We have 4 kings .out of 4 kings,we have to choosed 2 balls.
n(E2) =4C2
=6
n(E1nE2) =2C2 =1
P(E1) = n(E1)/n(S)
=325/1326
P(E2) =n(E2)/n(S)
=6/1326
P(E1nE2) =n(E1nE2)/n(S) =1/1326
P(both red or both kings) = P(E1UE2)
= P(E1) +P(E2)-P(E1nE2)
=325/1326 +6/1326 -1/1326
=330/1326 =55/221
Comment Policy : We invite you to comment on our posts, as long as they are respectful, to the point and approving. We do not perform pre-moderation of comments. However, in order to keep this site clean and useful, we reserve the right to remove any comment that is not in accordance with our Comment Policy.